Improving sample efficiency of robot grasping

Guanang Su
Northeastern University
su.gu@northeastern.edu

Abstract—In goal-conditioned reinforcement learning
problems, the sample efficiency is often a drawback that
most of the explorations are not consider as very useful
experience because they are failure episodes, which makes
low sample efficiency. In this paper, we implemented a
module of Hindsight Experience Replay (HER) in several
goal-conditioned environments, to discover its utility of
improving sample efficiency. Based on Deep Deterministic
Policy Gradient (DDPG), the experiments showed that the
HER module helps the agent learn much faster with more
robustness. We then discussed about the limitation of HER
and how hyper parameters effects its performance.

Index Terms—reinforcement learning, robot grasping,
deep learning, robotics, robot manipulation

I. INTRODUCTION

Reinforcement learning (RL) is becoming a pop-
ular trend in the field of machine learning and
robotics. RL provides a framework for learning
state-depend decisions while interacting with the
world (environment). A typical RL agent learns to
find maximum expectations in every situation in
order to eventually, get a reward which is often
predefined in the environment. The pipeline is very
general for different settings of tasks and often
very handy for finding available paths for solving
the problem, thanks to its inherent exploration and
exploitation mechanism. Furthermore, the recent
development of deep neural network also boost the
reinforcement learning community, by its powerful
function approximation ability. Several methods are
introduced, varying from model-free RL to model-
based RL. And, in model-free approaches, it varies
from Q-learning to policy optimization. Some of
which, such as DQN [1], Soft Actor-Critic (SAC)
[2], Deep Deterministic Policy Gradient (DDPG)
[3], are getting extremely great performance on
different tasks like gaming, playing chess, etc.

However, for some tasks with large action/state
space, e.g. grasping, pick and place, the exploration

Mingxi Jia
Northeastern University
Jjia.ming @northeastern.edu

process becomes difficult as the search space is too
large which causes so-called ”curse of dimensional-
ity”. Especially in the goal-variant sparse rewarded
environment, it takes too much time looking for
one successful path to update, for example, the
state q values as the goal is changing, leading to
a even larger exploration space because we need
state-action-goal pairs instead of state-action pairs.
Most of the “failure experience” is wasted while
we only utilize those “successful experience”. As
we reflect on human learning, human not only learn
from success but as well from failures.

In order to make full use of failure experience,
Andrychowicz, Marcin, et al [4], proposed Hind-
sight Experience Replay (HER) to improve the sam-
ple efficiency in goal-oriented tasks. By sampling
sub-goals, episodes who fail to reach the original
designated goal can be viewed as it successful
achieve other goals on its exploration path. The
specific mechanism of HER will be introduces in
Section II.D. In this paper, we analysis the influence
of HER on learning based on a deep policy-gradient
method DDPG [3] which is commonly used on tasks
which involve continuous state and action space.

In our experiment, we use the OpenAl Gym
Robotics environments [5] to train and test different
methods. Firstly, we use, FetchReach, FetchPush,
FetchSlide, FetchPickAndPlace, these four robotics
environments because these are goal-variant tasks
with high dimensional state/action space, in which
we have a 7 degree-of-freedom Arm with a two
fingered parallel gripper mounted. Rewards are
sparse that the agent only get a reward once
achieving the goal.

Observation space:
« observation: robot state & position of objects
o desired goal: 3-D target position

« achieved goal: position of robots’ end effector

Action space:

e 3-D movement (X, Y, Z, fixed 0)
« open/close state of the gripper

Episode 2

<
B

Fig. 1. FetchReach-v1.

Fig. 2. FetchPickAndPlace-v1.

The OpenAl gym robotics inherits the Mujoco
[5] simulation tool which gives real-time realistic
physical simulation.

According to the final project requirements, this
paper is organized as followed.

1) High-level understandings and motivations are
addressed in abstract and introduction sec-
tions.

2) Technical problem statement is in the experi-
ment section.

Fig. 3. FetchPush-v1.

Fig. 4. FetchSlide-v1.

3) The simulation and data are introduces in the
introduction section.

4) We describe Methods / algorithms in the back-
ground section.

5) References, Empirical results, and implemen-
tation details are in experiments section.

6) Analysis, discussions, and future direction are
placed in the last two sections.

II. BACKGROUND
A. Reinforcement Learning (RL)

Reinforcement Learning is a machine learning
method based on rewarding desired behaviors and
punishing undesired ones. The environment for RL
is usually state in the form of Markov Decision
Process (MDP) as the algorithms using dynamic
programming techniques. An MDP consists of a

finite environment state S, In general, reinforcement
learning learns a model from experience and use
that to update modelled transitions for the value
function. Some key elements that describe the basic
elements of RL and relationship in between are list
below and shown in Fig.5:

« environment: the physical world that agent op-
erates

o state: (current) situation of agent

« action: activity of agent’s next move

« reward: feedback of environment

« policy(or 7): method to map agents’ states and
actions

« value: future reward that an agent could receive
by taking an action in a specific state

Agent
state reward action

s, R, A
R (
_S.. | Environment]4—

vy

<

\.

Fig. 5. Basic Element and Ideas of Reinforcement Learning.

As one of the basic machine learning methods
alongside with supervised learning and unsuper-
vised learning, reinforcement learning does not need
labelled input/output and explicitly sub-optimal ac-
tions. Instead of get a balance between exploration
and exploitation, reinforcement learning combines
the advantage of supervised learning with the RL
algorithms.

B. Multi-goal RL

The multi-goal RL has a very practical value for
real-world robotics applications. Take a pick and
place tasks as an example, if we only have a single
goal during training, it means that, for different
goals, we will have to train them separately which is
time-consuming and as well impracticable knowing
that the training is much slower than testing. We
want our agent can find optimal path to different
given goals after one-time off-line training, where
typical RL agent only accept state as input without
knowing the goal because it is defaultly considered
a part of the environment. To solve this problem,
Schaul et al. introduced Universal Value Function

Approximators [9] by which we trained policy and
value function which not only take a state but also
a goal.

C. Hindsight Experience Replay (HER)

Dealing with sparse reward is one of the biggest
challenge in reinforcement learning problem since it
is hard for the agent to learn with reward in a large
action space. The new technique HER presented by
M Andrychowicz in 2017 [4]. This allows sample-
efficient and learning from both sparse and binary
reward. It can be combined with any off-policy
algorithms, like DDPG which used in this project.

Unlike the the current model-free RL algorithms,
human could learn from achieving an undesired goal
as from desired outcomes. Therefore, HER could
achieve multi-goal by treating each state of the
system as separate goal. The algorithm behind HER
is simple: we store some episodes from sy, s1, ..., ST
in the replay buffer every transition s; — s;; with
both the original goal and a subset of other goals.
Details shown in 15. HER may be seem as a form of
a implicit circumstance as the goals used for replay
naturally shift from simple goals to difficult ones.
At the same time, HER does not need to control
over the distribution of initial environment states.

D. Deep learning (DL)

Deep learning is in a rapid developing process
recently. AlexNet [8] is the first Deep Neural Net-
work (DNN) which outperforms any other methods
at the time, showing the power of DNNs on im-
age classification. Then, using the encoder-decoder
architecture, DNNs are designed to be better on
various fields, e.g. neural language processing, com-
puter vision, and robotics.

Reinforcement learning also utilizes function ap-
proximation methods to extend its generalization
ability. With the capability of non-linear approxima-
tion of neural networks, reinforcement learning can
accommodate more complex environment. Many
DL-based RL approaches even outperformed hu-
mans’ performance on certain tasks. For discretized
tasks, DQN [1] learns policy directly from pixels
encoded by convolutional neural network, without
manually designing features. For continuous tasks,
other than discretizing action space, several ap-
proaches are introduced. DDPG [3] allows agents

to learn two locomotion tasks and Torcs (driving
simulator). T Haarnoja et al. proposed SAC [4],
training on a real-world legged robot which also
learned gait which generalizes to unseen situations.

E. Deep Deterministic Policy Gradient (DDPG)

When think about reinforcement learning, Deep
Q Network (DQN) and State-Action-Reward-State-
Action (SARSA) are two commonly used model-
free algorithms in use. These two algorithms can
overcome some circumstances and derive a optimal
policy from seen states. But DQN has limitation of
it can only handle discrete, low-dimensional action
spaces. Many real world problem have continuous
and high-dimensional domains since it wish to
maximize the action-value function and required
iterative optimization process to finish that. While
DDPG could solve those challenges. Combined with
Deterministic Policy Gradient (DPG) [6] and DQN,
the actor-critic approach with insight of DQN, a
stable and robust off-policy with samples from
replay buffer to minimize the correction between
is formed, which called DDPG. [3]

In detail of introducing the network and algo-
rithm, a graph is given in 18. In DDPG, two neural
networks are maintained, a target policy (called
actor) S — A and action-value function
approximator (called critic) @@ : S x A — R.
The critic’s job is to approximate the actor’s action
value function ()™ and trained in a similar way as
the Q-function but the target are computed using
actions output by the actor. The actor is trained
with mini-batch gradient descent on the loss that
sampled from the replay buffer. Compared to other
method, DDPG maintains a more stable, quicker
shift between different environments and suitable
for complex action space, which is suitable for the
need of this project.

III. EXPERIMENTS
A. Environments

The environments we used in this paper are gen-
erally introduced in section II.A, of their observation
space, action space, and reward function. These four
environments, FetchReach, FetchPush, FetchSlide,
FetchPickAndPlace, are included in OpenAl gym
robotics which is also based on Mujoco physical
simulator. Four tasks has different difficulty level,

in which the reaching task is the easiest; pushing
and sliding are harder; the pick and place are the
most difficult one. The difficulty level is determined
mainly by the setting of the task:
o FetchReach: The gripper will try to reach a
randomly chosen goal pose in each episode.
o FetchPush: The robot need to learn how to push
a randomly positioned cube to a random goal.
« FetchSlide: Robot learns to push a cylinder
once on a slippery surface to make the object
stop at a random goal state.
» FetchPickAndPlace: The robot need to grasp a
cube and take it to a randomly sampled goal
state in a 3D space.

B. Learning with (DDPG)

DDPG is an actor-critic, model-free algorithm
which can be used in continuous control problems.
The first question is that can DDPG help agents
learn in the mentioned four environments whatever
the sample efficiency is, because sample efficiency
matters only if the algorithm can converge in the
given tasks. So, we train agents in our tasks using
DDPG. Here are the results.

Learning tasks with DDPG

100 +

80

60 - —— PReach
Push
—— slide
a0 —— Pick And Place

success rate %

20

T
0 10 20 30 40 50
epoch number

Fig. 6. How good agents learn in four given goal-oriented tasks.
Except the FetchReach, the rest tasks are gradually learn something
but in a very slow process. The success rate we are showing is tested
in the evaluation.

C. Does HER improve the sample efficiency?

We then implement the HER algorithm as a plug-
in module in the original DDPG so that we can

learn from failures also. As the HER declaims, the
sample efficiency is improved by sampling sub-
goals in every episodes no matter whether the agent
eventually achieve the original goal. That is to say,
with a efficient sampler, we expect to see that: (1)
HER being a plug-in module, it, at least, will not
impair the performance of DDPG; (2) HER will
make the learning faster in the same amount of
training time.

Learning tasks with DDPG+HER

100 A

80

60

40 A

success rate %

20 A Reach
Push
—— Slide

—— Pick And Place

T
0 10 20 30 40 50
epoch number

Fig. 7. All four tasks with DDPG+HER which dramatically boost
the training process

Learning to reach with HER and without HER

100 +

80 A

60

success rate %

40 A

20 -
—— Reach with HER

Reach without HER

T
] 10 20 30 40 50
epoch number

Fig. 8. Comparing FetchReach-vl with HER (DDPG+HER) and
without HER (only DDPG)

Learning to push with HER and without HER

100 A

80

60 4
—— Push with HER
Push without HER

success rate %

40

204

T
o] 10 20 30 40 50
epoch number

Fig. 9. Comparing FetchPush-vl with HER (DDPG+HER) and
without HER (only DDPG)

Learning to slide with HER and without HER

70 1 — slide with HER
Slide without HER

60

50 A

40

30

success rate %

20 A

10 4

0 10 20 30 40 50
epoch number

Fig. 10. Comparing FetchSlide-vl with HER (DDPG+HER) and
without HER (only DDPG)

The difficulties of tasks can be easily recognized
on the evaluation curve shown above. Even though
the reaching is only trained in single thread, the
agent learned in a epoch. Surprisingly, sliding task
is more difficult to learn than the pushing and
pick & place task. A conjecture would be that,
firstly, sliding is on a slippery surface and one-push
limitation so that the arm has few opportunity to
adjust the position of the object. Secondly, pick &
place learning appears good because as we observe
the actual trained model, the agent achieve nearly

Learning to Pick and Place with HER and without HER

100 A

80

60

—— Pick and Place with HER
—— Pick and Place without HER

success rate %

40 A

20 A

T T
0 10 20 30 40 50
epoch number

Fig. 11. Comparing FetchPick-vl with HER (DDPG+HER) and
without HER (only DDPG)

100% successful rate on simple goals, e.g. goals
near the desk. For those hard goals (fewer) which
is above the desk, the agent perform badly. So, if
hard goals appears more, pick & place will probably
show lower successful rate compared with sliding
task.

Comparing with DDPG only, HER dramatically
make the training process of hard tasks easier by im-
proving the sample efficiency. Without using HER,
push, slide, and pick & place barely learn nothing in
the first epoch. Instead, by adding HER into DDPG,
an obvious rising the learning curve shows that the
idea of learning from failure is essential especially
for tasks which have large action/state space with
variant goals.

D. Implementation details

In our experiments, parallel training are deployed,
except that FetchReach are non-parallel trained,
because it is already fast to reach optimal policy in
a single thread. Others are trained in eight threads.
We uses 8-thread parallel training so that each epoch
contains 8 episodes. Also, because we are using
universal value function approximator, so we are
finding the value of each state-action-goal pair in-
stead of typical state-action pair. In order to do so, as
the actor-critic model is used, we store state-action-
goal pair into our buffer and the input dimension of
the neural network is observation plus goal.

Fig. 12. Easy pick & place.

\

.

Fig. 13. Hard pick & place.

In addition, the HER module is implemented as
a modified sampler in the replay buffer where the
module set some modified goal for some certain
pairs. We only implemented the “future” strategy
that we “replay with k random states which come
from the same episode as the transition being re-
played and were observed after it” [4].

IV. CONCLUSION

These tasks are very different from the four-room
domain task as we used in the class. The four-
room is a single-goal environment that our agent
only need to find a optimal path from the origin to
a designated goal which keep constant in different
episodes. In contrast, the environment we are using
in this paper is goal-variant which means goals
varies in episodes, which are randomly selected.
The changing goal makes the training harder and
requires high non-linear approximation ability of
our function approximator.

To address this problem, HER make full use of
failure episodes to enrich agent’s experience of var-
ious goal. The approach is shown to be effective as

actor

OpenAl gym Env s, T, s, 1

critic

target

IH

1

—
b Replay buffer —

s,a, r,s, goal

i

s,a, s, goal l I s,a, s, goal’

Hindsight
Experience Replay

Fig. 14. HER+DDPG architecture

the experiment results imply. HER can dramatically
improve the sample efficiency of multi-goal problem
so that the training is much faster with robustness.

V. FUTURE DICTION

As mentioned, HER 1is limited that we need to
know the current state coordinate and the goal which
is hard to get in most of the real-world problems
where states are represented as e.g. images. For
example, we want a robot arm to grasp a object
on the desk and we have a goal image which is
pick and place the object to another certain place.
HER cannot work in this situation because it need to
access the true-state reward function. In the future,
we should extend HER to image-based tasks.

A Nair et al. [10] proposed a visual RL with
image goals where we measure the difference be-
tween images by comparing the distance of their
latent vector which is encoded by convolutional
neural networks. Based of this idea, the HER can
be extended to adapt image-based problems in the
future.

ACKNOWLEDGMENT

This paper is a final project outcome for
CS5180 Reinforcement Learning and Sequential
Decision lectured by Prof. Robert Platt. We are
thankful for Prof. Platt’s and TAs’ (Xupeng

Zhu, John Park) help, which teach us to
comprehensively know the literature so that
this project is possible. Here is our link for the code:
https://github.com/roboticTeam/robotArm_grasping.git

REFERENCES

[1] Mnih, Volodymyr, et al. ”Playing atari with deep reinforcement
learning.” arXiv preprint arXiv:1312.5602 (2013).

[2] Haarnoja, Tuomas, et al. ”Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor.”
International conference on machine learning. PMLR, 2018.

[3] Lillicrap, Timothy P., et al. ”Continuous control with deep rein-
forcement learning.” arXiv preprint arXiv:1509.02971 (2015).

[4] Andrychowicz, Marcin, et al. "Hindsight experience replay.”
arXiv preprint arXiv:1707.01495 (2017).

[5] Plappert, Matthias, et al. "Multi-goal reinforcement learning:
Challenging robotics environments and request for research.”
arXiv preprint arXiv:1802.09464 (2018).

[6] Silver, David, Lever, Guy, Heess, Nicolas, Degris, Thomas,
Wierstra, Dann, and Riedmiller, Martin. “Deterministic policy
gradient algorithms”. ICML, 2014.

[7] Todorov, Emanuel, Tom Erez, and Yuval Tassa. “Mujoco:
A physics engine for model-based control.” 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems.
IEEE, 2012.

[8] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Im-
agenet classification with deep convolutional neural networks.”
Advances in neural information processing systems 25 (2012):
1097-1105.

[9] Schaul, Tom, et al. "Universal value function approximators.”
International conference on machine learning. PMLR, 2015.

[10] Nair, Ashvin, et al. ’Visual reinforcement learning with imag-
ined goals.” arXiv preprint arXiv:1807.04742 (2018).

APPENDIX

Algorithm 1 Hindsight Experience Replay (HER)

Given:
e an off-policy RL algorithm A, > e.g. DQN, DDPG, NAF, SDQN
e astrategy S for sampling goals for replay, >e.g. S(so,...,s7) = m(sT)
e areward function7 : S x A x G — R. >e.g. 7(s,a,9) = —[fqg(s) = 0]
Initialize A > e.g. initialize neural networks

Initialize replay buffer R
for episode=1, M do
Sample a goal g and an initial state so.
fort = 0,7 —1do
Sample an action a; using the behavioral policy from A:

a: < my(stllg) > || denotes concatenation

Execute the action a; and observe a new state s; 1
end for
fort = 0,7 —1do

Ty = ’I"(St, ag, g)

Store the transition (s¢||g, at, 7+, St+1/|g) in R > standard experience replay

Sample a set of additional goals for replay G := S(current episode)
for ¢ € G do
TI = T(sh g, g,)

Store the transition (s¢||¢’, a¢, 7/, st+1||g’) in R > HER

end for
end for
fort = 1, N do
Sample a minibatch B from the replay buffer R
Perform one step of optimization using A and minibatch B
end for
end for

Fig. 15. HER algorithm

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|0®?) and actor 1 (s|0*) with weights < and 6*.
Initialize target network Q' and p/ with weights 89" «— 69, 0+ «+ o#
Initialize replay buffer R
for episode =1, M do
Initialize a random process N for action exploration
Receive initial observation state s,
fort=1,Tdo
Select action a; = u(s4|0") + N; according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s;1
Store transition (s, at, ¢, S¢41) in R
Sample a random minibatch of NV transitions (s;, a;, 7, Si+1) from R
Sety; = 1 +YQ' (si41, 1/ (3:41]6#)[69")
Update critic by minimizing the loss: L = & 3, (y; — Q(s,a:|09))?
Update the actor policy using the sampled policy gradient:

1
v9”‘] ~ N ; VGQ('s?a|0Q)|s:3i,a:u(si)v9“ﬂ(slop)|Sz‘

Update the target networks:
09 709 + (1 - 1)0¢
0" 70" + (1 —T7)0"
end for
end for

Fig. 16. DDPG algorithm

Normal replay buffer

goal

sT

|
sO

Learn few from failing episodes

Fig. 17. Without HER, a typical experience buffer learn very less from failure episodes.

Hindsight experience
replay HER buffer

goal

0 sT
|
<0 o

Learn from subgoals for future

Fig. 18. With HER, by sampling subgoals from failure episodes (failure to achieve the original goal), the agent learn from failures.

